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DART_LAB Tutorial Section 4:
Nonlinear and Non-Gaussian Extensions
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Quantile Conserving Ensemble Filters in Observation Space
DART now provides nearly general solutions for this step:
(Anderson, 2022, MWR150, 1061-1074).
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The Mesa Lab: Weather can Impact the Commute
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Should I Worry About Ice Going Down the Hill?

Have 10 forecasts of 
NCAR temperature.

Use Bayes to combine with 
uncertain NCAR 
temperature observation.



DART_LAB Section 4: 5 

Should I Worry About Ice Going Down the Hill?

Standard Ensemble Filter: 
Fit a normal to the forecast 
ensemble.
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Should I Worry About Ice Going Down the Hill?

Bayes product gives 
continuous normal 
posterior.

𝑃 𝐱!!|𝐘" =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘"#$
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Should I Worry About Ice Going Down the Hill?

Get a posterior ensemble.

At one time, we only knew 
how to do this for normal 
distributions.

Normal may work okay for 
applications like NWP.
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Should I Worry About Air Quality Going Down the Hill?

Forecast model knows 
ozone must be positive.

Fitting a normal leads to 
probability of negative.
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Should I Worry About Air Quality Going Down the Hill?

Doing the DA can lead to 
negative ensemble 
members.

What does that mean? Not 
sure, but nothing good.

Putting these back into 
model to make new 
forecasts is a problem, too.
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Should I Worry About Air Quality Going Down the Hill?

Now can do any 
distribution using quantile 
conserving ensemble 
algorithms.

Example: Gamma for 
bounded quantity like 
ozone.

Posterior ensemble no 
longer crazy.
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Should I Worry About Air Quality Going Down the Hill?

Now can do any 
distribution using quantile 
conserving ensemble 
algorithms.

Can now use much more 
general information about 
observation error from 
instrument experts. Nice 
collaborations are possible.
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Quantile Conserving Ensemble Filter Framework

How to select ensembles 
for the analysis 
distribution?

Conserve quantiles from 
the prior ensemble.

F is the cumulative 
distribution function (CDF) 
for the prior or analysis 
continuous distribution. It 
gives the quantile.

F(x) = 0.87

F(x) = 0.42
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Bayes’ RuleIntroduction: Quantile Conserving Ensemble Filter Framework
• Ensemble Kalman filters are effective but make implicit assumptions 

about normal distributions

• Present a generalization for ensemble Kalman filters that can use 
arbitrary univariate distributions
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Bayes’ RuleKey (very simple) Innovation
• Getting continuous PDF from ensemble is often simple. 

• Sample mean, variance for many distributions.

• Getting ‘nice’ ensemble from continuous PDF has been harder.

A Solution: Conserve quantiles of ensemble to sample a modified PDF.

Posterior ensemble quantiles are the same as prior ensemble quantiles.
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Bayes’ RuleQuantile Conserving Ensemble Filter Framework
1. Pick any appropriate continuous PDF given a prior ensemble.

2. Get the corresponding CDF,  𝐹% .

3. Compute quantiles of ensemble members, 𝐹% 𝑥&
% , 	𝑛 = 1,⋯ ,𝑁. 

4. Modify the PDF (filter, inflate, localize, whatever).

5. Get the modified analysis CDF,  𝐹' .

6. Updated ensemble conserves quantiles, 
 𝑥&' = 𝐹' #$ 𝐹% 𝑥&

% , 𝑛 = 1,⋯ ,𝑁 .

Generalized inverse if 𝐹' is not invertible 
𝐹' #$ 𝑦 = 𝑚𝑖𝑛 𝑥: 𝑦 ≤ 𝐹'(𝑥) . 
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable
Given a prior ensemble estimate of an observed quantity, y,
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable
Fit a continuous PDF from an appropriate distribution family
and find the corresponding CDF.

This example uses a normal PDF.
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable
Compute the quantile of ensemble members;
 just the value of CDF evaluated for each member.

This example uses a normal PDF.



DART_LAB Section 4: 19 

Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

This example uses a normal PDF.

Continuous likelihood for this observation.
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

Normal times normal is normal.

Bayes tells us that the continuous posterior PDF is the 
product of the continuous likelihood and prior. 
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

This example uses a normal PDF

Posterior ensemble members have same quantiles as prior. 
This is quantile function, inverse of posterior CDF. 
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable
For normal prior and likelihood, this is identical to existing 
deterministic Ensemble Adjustment Kalman Filter (EAKF) 
described in Section 1.
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Bayes’ RuleUseful families for continuous priors and likelihoods
Different families of distributions for continuous priors and 
likelihoods can lead to analytic continuous posterior. 

This is similar to the notion of conjugate priors for 
estimating parameters of distributions.

A list of prior / likelihood pairs that may be useful for 
scientific application follows.
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal

Gamma Gamma Gamma

Inverse Gamma Inverse Gamma Inverse Gamma

Beta Beta Beta

Beta prime Beta prime Beta prime

Exponential Exponential Exponential

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal Trans. EAKF

Gamma Gamma Gamma

Inverse Gamma Inverse Gamma Inverse Gamma

Beta Beta Beta

Beta prime Beta prime Beta prime

Exponential Exponential Exponential

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal Trans. EAKF

Gamma Gamma Gamma Bishop

Inverse Gamma Inverse Gamma Inverse Gamma Bishop

Beta Beta Beta

Beta prime Beta prime Beta prime

Exponential Exponential Exponential

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal Trans. EAKF

Gamma Gamma Gamma Bishop

Inverse Gamma Inverse Gamma Inverse Gamma Bishop

Beta Beta Beta Doubly

Beta prime Beta prime Beta prime bounded

Exponential Exponential Exponential

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal Trans. EAKF

Gamma Gamma Gamma Bishop

Inverse Gamma Inverse Gamma Inverse Gamma Bishop

Beta Beta Beta Doubly

Beta prime Beta prime Beta prime bounded

Exponential Exponential Exponential Applications?

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods
Prior Likelihood Posterior Notes

Normal Normal Normal EAKF

Lognormal Lognormal Lognormal Trans. EAKF

Gamma Gamma Gamma Bishop

Inverse Gamma Inverse Gamma Inverse Gamma Bishop

Beta Beta Beta Doubly

Beta prime Beta prime Beta prime bounded

Exponential Exponential Exponential Applications?

Pareto Pareto Pareto

Genl. Gamma
given p

Genl. Gamma
given p

Genl. Gamma
given p

Gamma Poisson Gamma

Skew normal Normal Skew normal Hodyss & Campbell

Truncated normal Normal Trunc. normal
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Bayes’ RuleUseful families for continuous priors and likelihoods (2)
Prior Likelihood Posterior Notes

Bounded Normal 
Rank Histogram

Any Bounded Normal 
Rank Histogram 
(except tails)

Nearly non-
parametric

Huber Huber Piecewise normal 
and exponential

Weighted sum of 
two normals

Normal Weighted sum of 
two normals

Sum of N normals 
same variance

Normal Weighted sum of N 
normals same 
variance

Delta function Any 'Weighted’ delta 
function

Any Piecewise constant Piecewise weighted
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Bayes’ RuleUseful families for continuous priors and likelihoods (2)
Prior Likelihood Posterior Notes

Bounded Normal 
Rank Histogram

Any Bounded Normal 
Rank Histogram 
(except tails)

Nearly non-
parametric

Huber Huber Piecewise normal 
and exponential

Outliers

Weighted sum of 
two normals

Normal Weighted sum of 
two normals

(also Chan)

Sum of N normals 
same variance

Normal Weighted sum of N 
normals same 
variance

Delta function Any 'Weighted’ delta 
function

Any Piecewise constant Piecewise weighted
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Bayes’ RuleUseful families for continuous priors and likelihoods (2)
Prior Likelihood Posterior Notes

Bounded Normal 
Rank Histogram

Any Bounded Normal 
Rank Histogram 
(except tails)

Nearly non-
parametric

Huber Huber Piecewise normal 
and exponential

Outliers

Weighted sum of 
two normals

Normal Weighted sum of 
two normals

Sum of N normals 
same variance

Normal Weighted sum of N 
normals same 
variance

Kernel filter, A&A 
1999

Delta function Any 'Weighted’ delta 
function

Any Piecewise constant Piecewise weighted
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Bayes’ RuleUseful families for continuous priors and likelihoods (2)
Prior Likelihood Posterior Notes

Bounded Normal 
Rank Histogram

Any Bounded Normal 
Rank Histogram 
(except tails)

Nearly non-
parametric

Huber Huber Piecewise normal 
and exponential

Outliers

Weighted sum of 
two normals

Normal Weighted sum of 
two normals

Sum of N normals 
same variance

Normal Weighted sum of N 
normals same 
variance

Kernel filter, A&A 
1999

Delta function Any 'Weighted’ delta 
function

‘Deterministic’ 
particle filter

Any Piecewise constant Piecewise weighted
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Bayes’ RuleUseful families for continuous priors and likelihoods (2)
Prior Likelihood Posterior Notes

Bounded Normal 
Rank Histogram

Any Bounded Normal 
Rank Histogram 
(except tails)

Nearly non-
parametric

Huber Huber Piecewise normal 
and exponential

Outliers

Weighted sum of 
two normals

Normal Weighted sum of 
two normals

Sum of N normals 
same variance

Normal Weighted sum of N 
normals same 
variance

Kernel filter, A&A 
1999

Delta function Any 'Weighted’ delta 
function

‘Deterministic’ 
particle filter

Any Piecewise constant Piecewise weighted Anything you want 
by quadrature!!!
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What if I Don’t Know the Right Distribution?

The Bounded Normal Rank 
Histogram Distribution works 
well for almost all cases.

Non-parametric. It builds a 
distribution from the ensemble. 

All examples here use this 
distribution.
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Bounded Normal Rank Histogram Continuous Prior
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Have a prior ensemble for a state variable (like wind).
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Bounded Normal Rank Histogram Continuous Prior
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• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.
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Bounded Normal Rank Histogram Continuous Prior
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• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.
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Bounded Normal Rank Histogram Continuous Prior
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• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.
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Bounded Normal Rank Histogram Continuous Prior
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• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.
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Bounded Normal Rank Histogram Continuous Prior
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• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.

1/6 of 
probability.

1/6 of 
probability.
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Unbounded has normal tails.
Quantiles are exactly uniform, U(0, 1), by construction.

Bounded Normal Rank Histogram Continuous Prior
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Matlab Hands-on: oned_ensemble

Select RHF to explore what priors 
and posteriors look like.
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Matlab Hands-on: oned_cycle

Select RHF to explore what priors 
and posteriors look like.
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Matlab Hands-on: More RHF example

The RHF can also be explored in:

oned_model
oned_model_inf
twod_ensemble
run_lorenz_63
run_lorenz_96
run_lorenz_96_inf
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Bounded has truncated tail, that is part of a normal.
Quantiles are exactly U(0, 1) by construction.

Bounded Normal Rank Histogram Continuous Prior
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Bounded has truncated tail, that is part of a normal.
Quantiles are exactly U(0, 1) by construction.
This is the corresponding CDF, doesn’t look so weird.

Bounded Normal Rank Histogram Continuous Prior
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Mixed Distributions: A Challenge for Tracers and Sources

Mixed Distributions: Have both discrete and continuous probability distribution parts.

Precipitation forecast is an example: 
 Discrete probability of zero rain (50%),
 Continuous distribution for all non-zero amounts, 
 (zero probability of exactly any given amount).

Important for some tracers.

Important for many sources (anthropogenic sources, wildfires, …).
(Anderson et al., 2024, MWR 152, 2111-2127)
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Mixed Distributions: A Challenge for Tracers and Sources
Need to be able to handle duplicate ensemble members.
Want 𝑥 = 	𝐹!" 𝐹 𝑥 .

Number by asterisk indicates number of ensemble members with this value.
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Quantile Conserving Ensemble Filters in Observation Space
DART now provides nearly general solutions for this step:
(Anderson, 2022, MWR150, 1061-1074).
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Matlab Hands-on: bounded_oned_ensemble

Controls are similar to oned_ensemble but the quantity is 
non-negative.

The EAKF (normal prior) doesn’t know about this bound. Try 
to generate negative posterior ensemble members.

The Gamma distribution does know about the bounds. 

The bounded normal rank histogram prior also knows about 
the bounds. 
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Linear Regression can Wreck Things

Linear regression can destroy benefits of new observation method.
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Standard EAKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution 
with 100 member ensemble.

Observed (Temperature)

U
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Contours of the correct distribution are 1, 5, 10, 20, 40, 60, 80% of max for all figures.
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Standard EAKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution 
with 100 member ensemble.

Posterior ensemble has problems.

Observed (Temperature)
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Standard EAKF: Challenged by Non-Gaussian and Nonlinear Relations

Example regression increment vectors: 
 Don’t respect bounds,
 Struggle with nonlinearity.

Observed (Temperature)
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Solution, Transform Marginals: Step 1: Compute Quantiles 

Apply the probability integral transform:

• Pick an appropriate continuous prior distribution.

• Compute CDF for each member to get quantiles.

• Quantiles are U(0, 1) for appropriate prior.
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Solution, Transform Marginals: Step 2: Probit Transform of Quantiles 

The ‘quantile function’ is the inverse of the CDF 
for a distribution.

The quantile function for the standard Normal is 
the probit function (plotted here).

Transforms U(0, 1) to Normal(0, 1). 

Marginal distributions should be N(0, 1). 
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Regression in Probit-Transformed Quantile Space

Do the regression of the observed probit increments 
onto the unobserved probit ensemble. 

Linear regression is best unbiased linear estimator 
(BLUE) in this space. 
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DART: Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution 
with 100 member ensemble.

Bounds enforced. Nonlinear 
aspect respected.
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DART: Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution 
with 100 member ensemble.

Bounds enforced. Nonlinear 
aspect respected.

Observed (Temperature)
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DART Now Implements Regression in a Transformed Space 
Can update unobserved variables with regression in a transformed space for each 
state variable.
(Anderson, 2023, MWR151, 2759-2777)
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Regression in Probit-Transformed Quantile Space

𝑦#
$ , 𝑦#%, 𝑥#

$, n=1, …N  are prior and posterior (analysis) ensembles of observed 

variable y and unobserved variable x.

𝐹&
$ and 𝐹'

$ are continuous CDFs appropriate for x and y.

Φ 𝑧  is the CDF of the standard normal, Φ!" 𝑝  is the probit function.
0𝑥#
$ = Φ!" 𝐹&

$ 𝑥#
$  , 0𝑦#

$ = Φ!" 𝐹'
$ 𝑦#

$  and 0𝑦#% = Φ!" 𝐹'
$ 𝑦#%  are probit space.

∆0𝑦# = 0𝑦#% − 0𝑦#
$ is probit space observation increment.

∆0𝑥# =
()!,#
()#,#

∆0𝑦#  regress increments in probit space (eq. 5 Anderson 2003).

0𝑥#% = 0𝑥#
$ + ∆0𝑥# is posterior ensemble in probit space.

𝑥#% = 𝐹&
$ !" Φ 0𝑥#%   is posterior ensemble.
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Matlab Hands-on: twod_ppi_ensemble

For the unobserved 
variable, select the 
distribution for  the 
probit probability 
integral transform.

 
This plot is similar 
to twod_ensemble 
except that the 
unobserved 
variable is 
nonnegative.

Select from a continuous 
distribution for the 
observed variable. It is 
used both for the 
observation increments and 
the probit probability 
integral transform.

This panel shows the prior 
and posterior in the probit 
probability integral 
transformed space.

Try to create a case with 
negative posterior 
members for the 
unobserved variable. 
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Localization of Probit Increments: Normal-binormal example
Standard increment localization may ignore prior constraints 
(values around zero are very unlikely).
Probit increment localization ‘knows’ prior was binormal.

Unobserved Prior (bottom row) 

Unobserved Posterior (top row)

Few members 
with values near 
zero, consistent 
with prior.

Lots of 
members with 
values near 
zero, 
inconsistent 
with prior. 



DART_LAB Section 4: 65 

Inflation in Probit Space: Gamma example
Standard inflation may violate prior constraints.
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Inflation in Probit Space: Gamma example
Standard inflation may violate prior constraints.
Inflation can be done in probit space.
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Inflation in Probit Space: Gamma example
Standard inflation may violate prior constraints.
Inflation can be done in probit space. And with BNRH!
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Matlab Hands-on: bounded_oned_ensemble (2)

Try applying inflation with the different 
continuous priors.
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What about the normal-normal case?
Computing increments in regular space is equivalent to computing increments 
in probit space.

Recall that the QCEFF normal filter in observation space is equivalent to the 
traditional EAKF in observation space.

Similarly, the method here is identical to the EAKF for unobserved updates.

The EAKF is equivalent to the Kalman Filter for normal/normal cases.

The QCEFF normal combined with probit space regression here is an 
ensemble generalization of the EAKF and the Kalman filter.


