DART_LAB Tutorial Section 1: Ensemble Data Assimilation Concepts in 1D An observation has a value $T_O(*)$, what the instrument measured. Without additional information this is meaningless. An observation has a value $T_O(*)$, what the instrument measured. Without additional information this is meaningless. The additional information we need is a likelihood function. An observation has a value $T_O(*)$, what the instrument measured. Without additional information this is meaningless. The additional information we need is a likelihood function. $$L(T) = P(T_O | T_{True} = T)$$ This is the relative probability that the actual temperature is T given that the instrument observed T_O . Simplest form (and some notation): $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ Read as: "Probability of A given B is equal to the probability of B given A times the probability of A normalized by the probability of B. Easily derived from basic definition of conditional probability: $$P(A|B) = \frac{P(A,B)}{P(B)} \text{ and } P(B|A) = \frac{P(A,B)}{P(A)}$$ Where P(A, B) represents the probability of A and B. Simplest form (and some notation): $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ Read as: "Probability of A given B is equal to the probability of B given A times the probability of A normalized by the probability of B. Note that statisticians might be concerned by using this discrete formulation for the continuous random variables we'll be discussing, but it all works out... Simplest form (and some notation): $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ We have the case where A is the temperature outside, T, and B is the observed value. $P(T|T_O) = \frac{P(T_O|T)P(T)}{P(T_O)}$ where $P(T_O|T)$ is a more concise way of writing the likelihood. Instrument builders know about the observation error associated with a measurement, say the thermometer is unbiased with +/- 0.8° C Gaussian error. Instrument builders know about the observation error associated with a measurement. Define the observation error as $E = T_o - T_{True}$ Then the observation error distribution is P(E). It is common for observation error to be approximated by a normal distribution with zero mean, $$P(E) = Normal(0, \sigma_0^2)$$ Standard deviation σ_O . The likelihood function and observation function are not the same thing. If the error distribution is $Normal(0, \sigma_O^2)$ and the observed value is T_O , then the likelihood is $Normal(T_O, \sigma_O^2)$. The likelihood function and observation function are not the same thing. Be careful when the error isn't a simple normal as the relation between the observational error distribution and likelihood is more complex. (Watch out for gammas/inverse gammas for instance). Suppose we have a second observation of the temperature. We are interested in the probability distribution of the temperature given both observations, $T_{O.1}$ and $T_{O.2}$ We will refer to our estimate using the first observation as the prior, and we want to include information from the second observation. Prior estimate of temperature from first observation. The green curve is $P(T \mid T_{O,1})$. In our example so far, this is the likelihood of the first observation. Aside: Derivation of generalized Bayes: $$P(A, B) = P(A|B) \quad P(B) = P(B|A)P(A) \quad (a1)$$ Aside: Derivation of generalized Bayes: $$P(A,B) = P(A|B) P(B) = P(B|A)P(A)$$ (a1) $$P(A,B,C) = P(A,(B,C)) = P(A|B,C)P(B,C)$$ (a2) $$P(A,B,C) = P(B,(A,C)) = P(B|A,C)P(A,C)$$ (a3) Extend (a1) to get (a2) and (a3). Aside: Derivation of generalized Bayes: $$P(A,B) = P(A|B) P(B) = P(B|A)P(A)$$ (a1) $$P(A,B,C) = P(A,(B,C)) = P(A|B,C)P(B,C)$$ (a2) $$P(A,B,C) = P(B,(A,C)) = P(B|A,C)P(A,C)$$ (a3) Solve from (a2), (a3). $$P(A|B,C) = \frac{P(B|A,C)P(A,C)}{P(B,C)}$$ (a4) Ratio from (a1). $$\frac{P(A,C)}{P(B,C)} = \frac{P(A|C)P(C)}{P(B|C)P(C)} = \frac{P(A|C)}{P(B|C)}$$ (a5) Substitute (a5) in (a4). $$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$ Aside: Derivation of generalized Bayes: $$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$ For our case with two temperature observations: $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T,T_{O,1})P(T|T_{O,1})}{P(T_{O,1}|T_{O,2})}$$ $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T,T_{O,1})P(T|T_{O,1})}{P(T_{O,1}|T_{O,2})}$$ We will assume that the random errors associated with the two observations are independent. This assumption will be retained throughout almost everything we do. $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T)P(T|T_{O,1})}{P(T_{O,1}|T_{O,2})}$$ Bayes Theorem: **Likelihood**: Probability that $T_{O,2}$ is observed if T is true value. $$P(T|T_{O,1}, T_{O,2}) = \frac{P(T_{O,2}|T)P(T|T_{O,1})}{P(T_{O,1}|T_{O,2})}$$ Prior **Posterior**: Probability of T given observation and prior. Also called **update** or **analysis**. Bayes Theorem: **Likelihood**: Probability that $T_{O,2}$ is observed if T is true value. $$P(T|T_{0,1},T_{0,2}) = \frac{P(T_{0,2}|T)P(T|T_{0,1})}{normalization}$$ Prior **Posterior**: Probability of *T* given observation and prior. Also called **update** or **analysis**. Denominator is a normalization so that posterior is a probability distribution (PDF). $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T)P(T|T_{O,1})}{Normalization}$$ #### Color Scheme The same color scheme is used throughout ALL Tutorial materials. $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T)P(T|T_{O,1})}{Normalization}$$ Generally no analytic solution for Posterior. $$P(T|T_{O,1},T_{O,2}) = \frac{P(T_{O,2}|T)P(T|T_{O,1})}{Normalization}$$ Gaussian Prior and Likelihood -> Gaussian Posterior. For Gaussian prior and likelihood... **Prior** $$P(T|T_{O,1}) = Normal(T_p, \sigma_p^2)$$ Likelihood $$P(T_{O,2}|T) = Normal(T_O, \sigma_O^2)$$ Then, Posterior $$P(T|T_{O,1},T_{O,2}) = Normal(T_u,\sigma_u^2)$$ With $$\sigma_u^2 = \left(\sigma_p^{-2} + \sigma_O^{-2}\right)^{-1}$$ and $$T_u = \sigma_u^2 \left(\sigma_p^{-2} T_p + \sigma_O^{-2} T_O \right)$$ ## Matlab Hands-on: gaussian_product This will also spawn a GUI that we will work with. ## Matlab Hands-on: gaussian_product **Purpose**: Explore the gaussian posterior that results from taking the product of a gaussian prior and a gaussian likelihood. ## Matlab Hands-on: gaussian_product #### Explore! - Change the mean value of the prior and the observation. - Change the standard deviation of the prior. - What is always true for the mean of the posterior? - What is always true for the standard deviation of the posterior? $$p(A \mid BC) = \frac{p(B \mid AC)p(A \mid C)}{p(B \mid C)} = \frac{p(B \mid AC)p(A \mid C)}{\int p(B \mid x)p(x \mid C)dx}$$ A: Prior Estimate based on all previous information, C. B: An additional observation. $$p(A \mid BC) = \frac{p(B \mid AC)p(A \mid C)}{p(B \mid C)} = \frac{p(B \mid AC)p(A \mid C)}{\int p(B \mid x)p(x \mid C)dx}$$ A: Prior Estimate based on all previous information, C. *B*: An additional observation. $$p(A \mid BC) = \frac{p(B \mid AC)p(A \mid C)}{p(B \mid C)} = \frac{p(B \mid AC)p(A \mid C)}{\int p(B \mid x)p(x \mid C)dx}$$ A: Prior Estimate based on all previous information, C. B: An additional observation. $$p(A \mid BC) = \frac{p(B \mid AC)p(A \mid C)}{p(B \mid C)} = \frac{p(B \mid AC)p(A \mid C)}{\int p(B \mid x)p(x \mid C)dx}$$ A: Prior Estimate based on all previous information, C. B: An additional observation. ## Bayes' Theorem $$p(A \mid BC) = \frac{p(B \mid AC)p(A \mid C)}{p(B \mid C)} = \frac{p(B \mid AC)p(A \mid C)}{\int p(B \mid x)p(x \mid C)dx}$$ A : Prior Estimate based on all previous information, C. B: An additional observation. p(A/BC): Posterior (updated estimate) based on C and B. ## Back to Temperature Observations Bayes Theorem: **Likelihood**: Probability that $T_{O,2}$ is observed if T is true value. $$P(T|T_{0,1},T_{0,2}) = \frac{P(T_{0,2}|T)P(T|T_{0,1})}{normalization}$$ Prior **Posterior**: Probability of *T* given observation and prior. Also called **update** or **analysis**. Denominator is a normalization so that posterior is a probability distribution (PDF). ## Back to Temperature Observations Bayes Theorem: $$P\big(T|T_{O,1},T_{O,2},\dots,T_{O,n}\big) = \frac{P\big(T_{O,n}|T|\big)P\big(T|T_{O,1},\dots,T_{O,n-1}|\big)}{Normalization}$$ Can do a sequence of n observations, each time making the previous posterior into the new prior. This will converge to the true temperature as a function of n. ## Matlab Hands-on: oned_cycle (1) **Purpose**: Use Bayes to 'assimilate' multiple observations of temperature at the same time. ## Matlab Hands-on: oned_cycle (1) What happens as more observations are assimilated? #### What is Data Assimilation? Observations combined with a Model forecast ... - 1. Suppose we have a linear forecast model L. - A. If temperature at time $t_1 = T_{1,}$ then the temperature at $t_2 = t_1 + \Delta t$ is $T_2 = L(T_1)$. - B. Example: $T_2 = G^*T_1$ - 1. Suppose we have a linear forecast model L. - A. If temperature at time $t_1 = T_{1,}$ then the temperature at $t_2 = t_1 + \Delta t$ is $T_2 = L(T_1)$. - B. Example: $T_2 = G^*T_1$ - 2. If posterior estimate at time t_1 is $Normal(T_{u,1}, \sigma_{u,1}^2)$, then the prior at t_2 is $Normal(T_{p,2}, \sigma_{p,2}^2)$. $$T_{p,2} = G * T_{u,1}$$ $$\sigma_{p,2}^2 = G * \sigma_{u,1}^2$$ - 1. Suppose we have a linear forecast model L. - A. If temperature at time $t_1 = T_{1,}$ then the temperature at $t_2 = t_1 + \Delta t$ is $T_2 = L(T_1)$. - B. Example: $T_2 = G^*T_1$ - 2. If posterior estimate at time t_1 is $Normal(T_{u,1}, \sigma_{u,1}^2)$, then the prior at t_2 is $Normal(T_{p,2}, \sigma_{p,2}^2)$. - 3. Given an observation at t_2 with observation distribution $Normal(T_O, \sigma_O^2)$ the likelihood is also $Normal(T_O, \sigma_O^2)$. - 1. Suppose we have a linear forecast model L. - A. If temperature at time $t_1 = T_{1,}$ then the temperature at $t_2 = t_1 + \Delta t$ is $T_2 = L(T_1)$. - B. Example: $T_2 = G^*T_1$ - 2. If posterior estimate at time t_1 is $Normal(T_{u,1}, \sigma_{u,1}^2)$, then the prior at t_2 is $Normal(T_{p,2}, \sigma_{p,2}^2)$. - 3. Given an observation at t_2 with observation distribution $Normal(T_O, \sigma_O^2)$ the likelihood is also $Normal(T_O, \sigma_O^2)$. - 4. The posterior at t_2 is $Normal(T_{u,2}, \sigma_{u,2}^2)$ where $T_{u,2}$ and $\sigma_{u,2}^2$ come from page 29. ## Matlab Hands-on: oned_cycle (2) **Purpose**: One-dimensional Kalman Filter with linear growth model. ## Matlab Hands-on: oned_cycle (2) Make the growth rate > 1 to have a linear growth forecast model. Cycle the data assimilation. Cycle means do assimilation, do forecast, repeat... What happens to the prior and posterior standard deviation as you cycle? What happens to the prior and posterior mean? #### A One-Dimensional Ensemble Kalman Filter Represent a prior pdf by a sample (ensemble) of N values: # A One-Dimensional Ensemble Kalman Filter: Model Advance If posterior ensemble at time t_1 is $T_{u,1,n},\ n=1,\ldots,N$ # A One-Dimensional Ensemble Kalman Filter: Model Advance If posterior ensemble at time t_1 is $T_{u,1,n},\ n=1,\ldots,N$ advance each member to time t_2 with model, $T_{p,2,n}=L(T_{u,1,n})\ n=1,\ldots,N$. #### A One-Dimensional Ensemble Kalman Filter Fit a continuous normal distribution to the prior ensemble (subscripts for prior and time omitted for clarity): Use sample mean $\overline{T} = \sum_{n=1}^{N} T_n / N$ and sample standard deviation $\sigma_T^2 = \sum_{n=1}^N (T_n - \bar{T})^2/(N-1)$ to determine a corresponding continuous distribution $Normal(\bar{T}, \sigma_T^2)$ # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation Fit a Gaussian to the sample. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation Get the observation likelihood. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation Compute the continuous posterior PDF. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation Use a deterministic algorithm to 'adjust' the ensemble. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation First, 'shift' the ensemble to have the exact mean of the posterior. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation First, 'shift' the ensemble to have the exact mean of the posterior. Second, linearly contract to have the exact variance of the posterior. Sample statistics are identical to Kalman filter. # A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation As we'll discuss later, this is the same as conserving quantiles of the prior ensemble. This Ensemble 'Adjustment' Kalman filter is a type of Quantile Conserving Ensemble Filter. ## Matlab Hands-On: oned_ensemble Purpose: Explore how ensemble filters update a prior ensemble. ## Matlab Hands-On: oned_ensemble #### **Explorations:** - 1. Keep your ensembles small, less than 10, for easy viewing. - Create a nearly uniformly spaced ensemble.Examine the update. - 4. What happens with a bimodal ensemble (two clusters of members on either side)? - 5. What happens with a single outlier in the ensemble? ## Matlab Hands-on: oned_cycle (3) **Purpose**: One-dimensional Kalman Filter with linear growth model. ## Matlab Hands-on: oned_cycle (3) See what happens when you create an ensemble and then cycle. How do results compare to the continuous KF? What elements of the ensemble vary with time? ### Matlab Hands-On: oned model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. Top button allows alternating model advance and assimilation steps. Or automatically sequence advances and assimilations. #### Notes: The 'truth' is always 0. Observation noise is a draw from Normal(0,1) ### Matlab Hands-On: oned model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. ### Matlab Hands-On: oned_model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. Prior ensemble members green ticks, Posterior blue, observation is *. Truth is always 0. More on rank histograms later. ### Matlab Hands-On: oned model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. A time series of the assimilation. Line segments show forecast evolution. Most recent prior, observation, and posterior are same as in upper left window but plotted with a vertical axis. ### Matlab Hands-On: oned_model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. Time series of error and spread. Sawtooth pattern because prior and posterior values are shown for each time. ### Matlab Hands-On: oned model #### Purpose: - Explore behavior of a complete 1-D ensemble filter for a linear system. - Look at the behavior of different ensemble sizes. Kurtosis as function of time. Stays constant here. ### Matlab Hands-On: oned_model #### **Explorations**: - Step through a sequence of advances and assimilations with the top button. Watch the evolution of the ensemble, the error and spread. - 2. How does a larger ensemble size (< 10 is easiest to see) act? - Compare the error and spread for different ensemble sizes. - Note the time behavior of the error and spread. - 3. Let the model run freely using the second button.