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DART_LAB Section 1: 2 

Example: Estimating the Temperature Outside

An observa+on has a value 𝑇!( * ), what the instrument measured.
Without addi+onal informa+on this is meaningless. 
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Example: Estimating the Temperature Outside

An observation has a value 𝑇!( * ), what the instrument measured.
Without additional information this is meaningless. 

The additional information we need is a likelihood function. 
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Example: Estimating the Temperature Outside

The additional information we need is a likelihood function. 
𝐿 𝑇 = 𝑃 𝑇!|𝑇"#$% = 𝑇

This is the relative probability that the actual temperature is 
T given that the instrument observed 𝑇!.

An observation has a value 𝑇!( * ), what the instrument measured.
Without additional information this is meaningless. 
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Bayes’ Theorem

Simplest form (and some notation):

𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

Read as: “Probability of A given B is equal to the probability of B 
given A times the probability of A normalized by the probability of B.

Easily derived from basic definition of conditional probability:

𝑃 𝐴|𝐵 =
𝑃(𝐴, 𝐵)
𝑃(𝐵)

	 and	𝑃 𝐵|𝐴 =
𝑃(𝐴, 𝐵)
𝑃(𝐴)

Where 𝑃 𝐴, 𝐵  represents the probability of A and B.
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Bayes’ Theorem

Simplest form (and some notation):

𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

Read as: “Probability of A given B is equal to the probability of B 
given A times the probability of A normalized by the probability of B.

Note that statisticians might be concerned by using this discrete 
formulation for the continuous random variables we’ll be discussing, 
but it all works out…
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Bayes’ Theorem

Simplest form (and some notation):

𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

We have the case where A is the temperature outside, T, 
and B is the observed value. 

𝑃 𝑇|𝑇! = & "!|" & "
& "!

  where 𝑃 𝑇!|𝑇  is a more concise way of 

writing the likelihood.
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Example: Estimating the Temperature Outside
Instrument builders know about the observa+on error associated 
with a measurement, say the thermometer is unbiased with +/- 
0.8o C Gaussian error.
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Example: Estimating the Temperature Outside
Instrument builders know about the observation error associated 
with a measurement.
Define the observation error as 𝐸 = 𝑇( − 𝑇"#$%

Then the observation error distribution is 𝑃 𝐸 .

It is common for observation error to be approximated by
a normal distribution with zero mean,

𝑃 𝐸 = 𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜎!)	
Standard deviation 𝜎!.
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Example: Estimating the Temperature Outside
The likelihood function and observation function are not the 
same thing. 

If the error distribution is 𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜎!)  and the observed 
value is 𝑇!, then the likelihood is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!, 𝜎!) .
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Example: Estimating the Temperature Outside
The likelihood func+on and observa+on func+on are not the same 
thing.

Be careful when the error isn’t a simple normal as the relation 
between the observational error distribution and likelihood is 
more complex. (Watch out for gammas/inverse gammas for 
instance).
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Example: Estimating the Temperature Outside
Suppose we have a second observation of the temperature. We 
are interested in the probability distribution of the temperature 
given both observations, 𝑇!,+ and 𝑇!,)

We will refer to our estimate using the first observation as the 
prior, and we want to include information from the second 
observation.
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Example: Estimating the Temperature Outside

The green curve is P(T | TO,1).
In our example so far, this is the likelihood of the first observation.

Prior es+mate of temperature from first observa+on.
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Aside: Derivation of generalized Bayes:
𝑃 𝐴, 𝐵 = 	 𝑃 𝐴 𝐵 	 𝑃 𝐵 	 = 𝑃 𝐵 𝐴 𝑃 𝐴 (a1)
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Aside: Derivation of generalized Bayes:
𝑃 𝐴, 𝐵 = 	 𝑃 𝐴 𝐵 	 𝑃 𝐵 	 = 𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐴, 𝐵, 𝐶 = 	 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝐵, 𝐶 𝑃 𝐵, 𝐶

𝑃 𝐴, 𝐵, 𝐶 = 	 𝑃 𝐵, 𝐴, 𝐶 = 𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶

(a1)
(a2)
(a3)

Extend (a1) to get (a2) and (a3).
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Aside: Derivation of generalized Bayes:
𝑃 𝐴, 𝐵 = 	 𝑃 𝐴 𝐵 	 𝑃 𝐵 	 = 𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐴, 𝐵, 𝐶 = 	 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝐵, 𝐶 𝑃 𝐵, 𝐶

𝑃 𝐴, 𝐵, 𝐶 = 	 𝑃 𝐵, 𝐴, 𝐶 = 𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶

𝑃 𝐴 𝐵, 𝐶 =
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶

𝑃 𝐵, 𝐶
𝑃 𝐴, 𝐶
𝑃 𝐵, 𝐶

=
𝑃 𝐴 𝐶 𝑃 𝐶
𝑃 𝐵 𝐶 𝑃 𝐶

=
𝑃 𝐴 𝐶
𝑃 𝐵 𝐶

𝑃 𝐴 𝐵, 𝐶 =
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴 𝐶

𝑃 𝐵 𝐶

(a1)
(a2)
(a3)

(a4)

(a5)

Solve from (a2), (a3).

Ratio from (a1).

Substitute (a5) in (a4).
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Aside: Deriva+on of generalized Bayes:

𝑃 𝐴 𝐵, 𝐶 	 =
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴 𝐶

𝑃 𝐵 𝐶

For our case with two temperature observa+ons:

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇, 𝑇!,+	 𝑃 𝑇|𝑇!,+

𝑃 𝑇!,+|𝑇!,)



DART_LAB Section 1: 18 

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇, 𝑇!,+	 𝑃 𝑇|𝑇!,+

𝑃 𝑇!,+|𝑇!,)

We will assume that the random errors associated with the two observations are 
independent. This assumption will be retained throughout almost everything we do.

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+

𝑃 𝑇!,+|𝑇!,)
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Combining the Prior Estimate and Observation

Bayes 
Theorem:

Posterior: Probability of T given 
observa+on and prior. Also 
called update or analysis.

Prior

Likelihood: Probability that TO,2 is 
observed if T is true value.

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+

𝑃 𝑇!,+|𝑇!,)
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Combining the Prior Estimate and Observation

Bayes 
Theorem:

Posterior: Probability of T given 
observation and prior. Also 
called update or analysis.

Prior

Likelihood: Probability that TO,2 is 
observed if T is true value.

Denominator is a normalization 
so that posterior is a probability 
distribution (PDF).

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛



DART_LAB Section 1: 24 

Combining the Prior Estimate and Observation

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Green == Prior

Red == Observation

Blue == Posterior

The same color scheme is used throughout ALL Tutorial materials.

Color Scheme
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Combining the Prior Estimate and Observation

Generally no analytic solution for Posterior.

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

Gaussian Prior and Likelihood -> Gaussian Posterior.

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Combining the Prior Estimate and Observation

For Gaussian prior and likelihood…

Prior      𝑃 𝑇|𝑇!,+ = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇,, 𝜎,)	

Likelihood     𝑃 𝑇!,)|𝑇 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!, 𝜎!)	

Then, Posterior   𝑃 𝑇|𝑇!,+, 𝑇!,) = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇$, 𝜎$)	

With 𝜎$) = 𝜎,-) + 𝜎!-)
-+

 and

  𝑇$ = 𝜎$) 𝜎,-)𝑇, + 𝜎!-)𝑇!
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Matlab Hands-on: gaussian_product

This will also spawn a GUI that we will work with.
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Matlab Hands-on: gaussian_product

Purpose: Explore the gaussian posterior that results from taking 
the product of a gaussian prior and a gaussian likelihood.

1) Set Prior Mean and 
Standard Deviation. 

2) Set Observation
Mean and Observation
Error Standard Deviation. 

3) Select Plot Posterior to
Update the items in blue.
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Matlab Hands-on: gaussian_product

Explore!

• Change the mean value of the prior and the observa+on.

• Change the standard devia+on of the prior. 

• What is always true for the mean of the posterior?

• What is always true for the standard devia+on of the posterior?



DART_LAB Section 1: 33 

−6 −4 −2 0 2 4 60

0.05

0.1

0.15

0.2 Prior PDF

Pr
ob

ab
ilit

y

A   : Prior Estimate based on all previous information, C.
B   : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Theorem
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A   : Prior Estimate based on all previous information, C.
B   : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.

−6 −4 −2 0 2 4 60

0.05

0.1

0.15

0.2 Prior PDF

Pr
ob

ab
ilit

y Obs. Likelihood

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Theorem
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A   : Prior Estimate based on all previous information, C.
B   : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.
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Product (Numerator)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Theorem
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A   : Prior Es+mate based on all previous informa+on, C.
B   : An addi+onal observa+on.
p(A|BC) : Posterior (updated es+mate) based on C and B.
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Normalization (Denom.)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Theorem
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Normalization (Denom.)

Posterior

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

A   : Prior Estimate based on all previous information, C.
B   : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.

Bayes’ Theorem
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Back to Temperature Observations

Bayes 
Theorem:

Posterior: Probability of T given 
observation and prior. Also 
called update or analysis.

Prior

Likelihood: Probability that TO,2 is 
observed if T is true value.

Denominator is a normalization 
so that posterior is a probability 
distribution (PDF).

𝑃 𝑇|𝑇!,+, 𝑇!,) =
𝑃 𝑇!,)|𝑇	 𝑃 𝑇|𝑇!,+
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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𝑃 𝑇|𝑇!,+, 𝑇!,), … , 𝑇!,. =
𝑃 𝑇!,.|𝑇	 𝑃 𝑇|𝑇!,+, … , 𝑇!,.-+	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Back to Temperature Observations

Bayes 
Theorem:

Can do a sequence of n observa+ons, each +me making the 
previous posterior into the new prior.
This will converge to the true temperature as a func+on of n.
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Matlab Hands-on: oned_cycle (1)

Purpose: Use Bayes to ‘assimilate’ multiple observations of 
temperature at the same time.

Press to assimilate next T 
observation.

Change the error standard 
deviation of observations.
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Matlab Hands-on: oned_cycle (1)

What happens as more observations are assimilated?
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What is Data AssimilaMon?

…to produce an analysis
(best possible estimate).

+

Observations combined with a Model forecast …
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature at time t1 = T1, then the                    
temperature at t2 = t1 + Δt  is  T2 = L(T1).

B. Example: T2 = G*T1
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature at Kme t1 = T1, then the       
temperature at t2 = t1 + Δt  is  T2 = L(T1).

B. Example: T2 = G*T1

2. If posterior esKmate at Kme t1 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!,#, 𝜎!,#$ , then 
the prior at t2 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇%,$, 𝜎%,$$ .

𝑇%,$ = 𝐺 ∗ 𝑇!,# 

𝜎%,$$ = 𝐺 ∗ 𝜎!,#$  
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature at time t1 = T1, then the       
temperature at t2 = t1 + Δt  is  T2 = L(T1).

B. Example: T2 = G*T1

2. If posterior estimate at time t1 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!,#, 𝜎!,#$ , then 
the prior at t2 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇%,$, 𝜎%,$$ .

3. Given an observation at t2 with observation distribution 
𝑁𝑜𝑟𝑚𝑎𝑙 𝑇&, 𝜎&$  the likelihood is also 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇&, 𝜎&$ .
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature at time t1 = T1, then the       
temperature at t2 = t1 + Δt  is  T2 = L(T1).

B. Example: T2 = G*T1

2. If posterior estimate at time t1 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!,#, 𝜎!,#$ , then 
the prior at t2 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇%,$, 𝜎%,$$ .

3. Given an observation at t2 with observation distribution 
𝑁𝑜𝑟𝑚𝑎𝑙 𝑇&, 𝜎&$  the likelihood is also 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇&, 𝜎&$ .

4. The posterior at t2 is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇!,$, 𝜎!,$$  where 𝑇!,$  and 
𝜎!,$$  come from page 29.
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Matlab Hands-on: oned_cycle (2)

Purpose: One-dimensional Kalman Filter with linear growth 
model.

Press to assimilate next 
observaGon.

Change the error standard 
deviation of observations.

Change the growth rate G.
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Matlab Hands-on: oned_cycle (2)

Make the growth rate > 1 to have a linear growth forecast 
model.
Cycle the data assimilation.

Cycle means do assimilation, do forecast, repeat…

What happens to the prior and posterior standard deviation as 
you cycle?

What happens to the prior and posterior mean?
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:
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A One-Dimensional Ensemble Kalman Filter: 
Model Advance

If posterior ensemble at time t1 is Tu,1,n,  n = 1, …, N
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A One-Dimensional Ensemble Kalman Filter: 
Model Advance

If posterior ensemble at time t1 is Tu,1,n,  n = 1, …, N
advance each member to time t2 with model, Tp,2,n = L(Tu,1,n)  n = 1, …,N .
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A One-Dimensional Ensemble Kalman Filter

Fit a continuous normal distribution to the prior ensemble 
(subscripts for prior and time omitted for clarity):

Use sample mean

and sample standard deviation 𝜎'$ = ⁄∑()#* 𝑇( − 0𝑇 $ 𝑁 − 1  to determine a 

corresponding continuous distribution 𝑁𝑜𝑟𝑚𝑎𝑙 0𝑇, 𝜎'$
€ 

T = Tn N
n=1

N

∑
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A One-Dimensional Ensemble Kalman Filter: 
Assimila5ng an Observa5on

Fit a Gaussian to the sample.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

Get the observation likelihood.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

Compute the continuous posterior PDF.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

Use a determinis;c algorithm to ‘adjust’ the ensemble.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

First, ‘shift’ the ensemble to have the exact mean of the posterior.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.
Sample statistics are identical to Kalman filter.
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A One-Dimensional Ensemble Kalman Filter: 
Assimilating an Observation

As we’ll discuss later, this is the same as conserving quantiles of the 
prior ensemble. This Ensemble ‘Adjustment’ Kalman filter is a type of
Quantile Conserving Ensemble Filter.
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Matlab Hands-On: oned_ensemble

Purpose: Explore how ensemble filters update a prior ensemble.
1) change these  
if you want to.

2) Click on               
Create New Ensemble

3) Click in here – a few times

4) Click outside the axis on the 
light gray (anywhere) to finish 
defining the ensemble.

Ignore the Inflation and 
EAKF menus for now.

5) Click on               
Update Ensemble
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Matlab Hands-On: oned_ensemble

Explorations:

1. Keep your ensembles small, less than 10, for                           
easy viewing.

2. Create a nearly uniformly spaced ensemble.                    
Examine the update.

3. What happens with an ensemble that is confined to one side 
of the likelihood?

4. What happens with a bimodal ensemble (two clusters of 
members on either side)?

5. What happens with a single outlier in the ensemble?

Too Many!
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Matlab Hands-on: oned_cycle (3)

Purpose: One-dimensional Kalman Filter with linear growth 
model.

Press to assimilate next  
observation.

Change the error standard 
deviation of observations.

Change the growth rate G.

Create an ensemble as in 
oned_ensemble.
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Matlab Hands-on: oned_cycle (3)

See what happens when you create an ensemble and then cycle.
How do results compare to the continuous KF?
What elements of the ensemble vary with time?
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

Notes:
The ‘truth’ is always 0.
Observation noise is a draw from 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

Top button allows 
alternating model 
advance and 
assimilation steps.

Or automatically 
sequence 
advances and 
assimilations.
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

This is the 
equation  for the 
model time 
tendency.

Change the 
ensemble size or 
the model 
parameters.
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

Prior ensemble 
members green ticks,
Posterior blue, 
observation is *. 
Truth is always 0.

More on rank 
histograms later.
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

A time series of the 
assimilation. Line 
segments show 
forecast evolution. 
Most recent prior, 
observation, and 
posterior are same as 
in upper left window 
but plotted with a 
vertical axis.
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

Time series of error 
and spread. Sawtooth 
pattern because prior 
and posterior values 
are shown for each 
time. 

Error is the absolute 
value of the difference 
between the ensemble 

mean and the truth.

Spread is the 
standard deviation 
of the ensemble.
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Matlab Hands-On: oned_model
Purpose:
• Explore behavior of a complete 1-D ensemble filter for a linear system. 
• Look at the behavior of different ensemble sizes.

Kurtosis as function 
of time. Stays 
constant here.
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Matlab Hands-On: oned_model

Explorations:

1. Step through a sequence of advances and assimilations with 

the top button. Watch the evolution of the ensemble, the 

error and spread.

2. How does a larger ensemble size ( < 10 is easiest to see) act?

•  Compare the error and spread for different ensemble sizes.

•  Note the time behavior of the error and spread.

3. Let the model run freely using the second button.


