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DART_LAB Tutorial Section 1:
Ensemble Data Assimilation Concepts in 1D
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DART_LAB Tutorial Section 5:
Adaptive Inflation
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Variance inflation for observations: An adaptive error-tolerant filter

1. For observed variable, have estimate of prior-observed inconsistency.

2. Define ES, Expected separation |prior_mean – observation| = 𝜎!" + 𝜎#"

 Assumes that prior and observation are supposed to be unbiased.
 Is it model error or random chance?
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Glossary for this Section

𝑦#: Observed value for observation y at time 𝑡$
𝜎#": Observation error variance for observation y at time 𝑡$
%𝑦!: Mean of prior ensemble estimate of observation y at time 𝑡$
𝜎!": Variance of prior ensemble estimate of observation y at time 𝑡$
𝑌$: All the observations that have been assimilated up to and including the kth  
  observation of y
𝜆: Multiplicative inflation factor for observation y (see section 3)
𝜆$: Estimate of 𝜆 at time 𝑡$
𝜆̅!: Mean of prior estimate of 𝜆 at time 𝑡$
𝜆̅%: Mean of posterior (updated) estimate of 𝜆 at time 𝑡$
𝜎&,!" : Variance of prior estimate of 𝜆 at time 𝑡$
𝜎&,%" : Variance of posterior (updated) estimate of 𝜆 at time 𝑡$
D: The distance (absolute value of the difference) between 𝑦# and %𝑦!
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Variance inflation for observations: An adaptive error-tolerant filter

1. For observed variable, have estimate of prior-observed inconsistency.

2. Expected separation |prior_mean – observation| = 𝜎!" + 𝜎#"

3. Inflating increases the ‘expected separation’:
 Increases ‘apparent’ consistency between prior and observation.
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Variance inflation for observations: An adaptive error-tolerant filter

Distance D from prior mean to obs is distributed as: 𝑁 0, 𝜆𝜎!" + 𝜎#" = 𝑁 0, 𝜃

Prob 𝑦# is observed given 𝜆: 𝑝 𝑦)|𝜆 = 2𝜋𝜃* + ⁄- *𝑒𝑥𝑝 ⁄−𝐷* 2𝜃*
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Variance inflation for observations: An adaptive error-tolerant filter
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Assume prior is gaussian: 𝑝 𝜆$|𝑌$() = 𝑁 𝜆̅!, 𝜎&,!"

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.
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Variance inflation for observations: An adaptive error-tolerant filter
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Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

We’ve assumed a 
gaussian for prior 
𝑝 𝜆$|𝑌$%& .

Recall that the 
likelihood, 𝑝 𝑦$|𝜆
can be evaluated
from normal PDF using 
the last equation on 
slide 5.𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization
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Variance inflation for observations: An adaptive error-tolerant filter

0 1 2 3 4 5 60

1

2

Obs. Space Inflation Factor: λ

Prior λ PDF

−1 0 1 2 3 40

0.2

0.4

0.6

Observation: y

Obs. Likelihood
Inflated Prior λ = 0.75

Get 𝑝 𝑦$|𝜆 = 0.75  
from normal PDF, last 
eq. on slide 5; this is red 
asterisk on lower panel.
Multiply by 
𝑝 𝜆$ = 0.75|𝑌$%& , the 
value of green curve on 
the lower panel,
to get 𝑝 𝜆$ = 0.75|𝑌$ , 
the blue asterisk.

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization
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Variance inflation for observations: An adaptive error-tolerant filter
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Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization

Get 𝑝 𝑦$|𝜆 = 1.50  
from normal PDF, last 
eq. on slide 5; this is red 
asterisk on lower panel.
Multiply by 
𝑝 𝜆$ = 1.50|𝑌$%& , the 
value of green curve on 
the lower panel,
to get 𝑝 𝜆$ = 1.50|𝑌$ , 
the blue asterisk.
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Variance inflation for observations: An adaptive error-tolerant filter
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Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization

Get 𝑝 𝑦$|𝜆 = 2.25  
from normal PDF, last 
eq. on slide 5; this is red 
asterisk on lower panel.
Multiply by 
𝑝 𝜆$ = 2.25|𝑌$%& , the 
value of green curve on 
the lower panel,
to get 𝑝 𝜆$ = 2.25|𝑌$ , 
the blue asterisk.
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Variance inflation for observations: An adaptive error-tolerant filter
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Repeat for a range of 
values of l.

Now must get 
posterior in same form 
as prior (gaussian).

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization
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Variance inflation for observations: An adaptive error-tolerant filter
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Very little information 
about l in a single 
observation.

Posterior and prior 
are very similar.

Normalized posterior 
indistinguishable from 
prior.

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization



DART_LAB Section 5: 13 

Variance inflation for observations: An adaptive error-tolerant filter

1 2

−0.01

0

0.01

Obs. Space Inflation Factor: λ

λ: Posterior − Prior

Max density shifted to right

−1 0 1 2 3 40

0.2

0.4

0.6

Observation: y

Obs. Likelihood
Very little information 
about l in a single 
observation.

Posterior and prior 
are very similar.

Difference shows 
slight shift to larger 
values of l.

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization
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Variance inflation for observations: An adaptive error-tolerant filter

One option is to use 
Gaussian posterior 
for l.

Select max (mode) of 
posterior as mean of 
updated Gaussian.

Do a fit for updated 
standard deviation.

Use Bayesian statistics to get estimate of 𝜆$, the inflation factor at time 𝑡$.

𝑝 𝜆$ , 𝑌$ = 𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%& /normalization
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Variance inflation for observations: An adaptive error-tolerant filter

A. Computing updated inflation mean,     . 

Mode of  𝑝 𝑦$|𝜆 𝑝 𝜆$|𝑌$%&  can be found analytically!

Solving of  ' ! (*|* ! **|+*+,
'(

= 0 leads to 6th order poly in q.

This can be reduced to a cubic equation and solved to give mode. 

New 𝜆̅,is set to the mode.

This is relatively cheap compared to computing regressions.

 λu
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Variance inflation for observations: An adaptive error-tolerant filter

B. Computing updated inflation variance, 𝜎*,," . 

1.Evaluate numerator at mean, 𝜌. = 𝑝 𝜆̅,

2. Evaluate numerator at second point, 𝜌/ = 𝑝 𝜆̅, + 𝜎*,!

3. Find 𝜎*,,"  so 𝑁 𝜆̅,, 𝜎*,,"  goes through 𝜌. and 𝜌/

4. Compute as 𝜎*,," = −𝜎*,!" /2𝑙𝑛 𝑟  where 𝑟 = 𝜌//𝜌.
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Single Variable Computations with Adaptive Error Correction
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1. Compute updated inflation distribution, 𝑝 𝜆$|𝑌$ .

Observation: y
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Single Variable Computations with Adaptive Error Correction
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1. Compute updated inflation distribution, 𝑝 𝜆$|𝑌$ .
2.  Inflate ensemble using mean of updated l distribution.

Observation: y
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Single Variable Computations with Adaptive Error Correction
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1. Compute updated inflation distribution, 𝑝 𝜆$|𝑌$ .
2. Inflate ensemble using mean of updated l distribution.
3. Use inflated prior to compute posterior ensemble of y.

Observation: y
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Single Variable Computations with Adaptive Error Correction
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1. Compute updated inflation distribution, 𝑝 𝜆$|𝑌$ .
2.  Inflate ensemble using mean of updated l distribution.
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior ensemble.

Observation: y
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Matlab Hands-on: oned_model_inf

Adaptive inflation can be tested with matlab script oned_model_inf.m

Can explore 5 different values that control adaptive inflation:
• Minimum value of inflation mean, often set to 1 (no deflation).
• Inflation damping, more on this later. Value of 1.0 turns it off.
• Maximum value of inflation mean.
• The initial value of the inflation standard deviation.
• A lower bound on inflation standard deviation (it will asymptote to zero if allowed).
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Matlab Hands-on: oned_model_inf

Turn on 
adaptive 
inflation.

Inflation 
settings.

Inflation value and its 
standard deviation.
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Matlab Hands-on: oned_model_inf

0ned_model_inf generates a summary file each time statistics are reset.

File oned_model_inf.log keeps track of parameter settings and metrics.

# Time step: 1 (Initial configuration)
 - Ensemble size = 4
 - Model bias = 0.00
 - Nonlinear `a` parameter = 0.00
 - Inflation value = 1.02
 - (Adaptive) Inflation lower bound = 1.00
 - (Adaptive) Inflation upper bound = 100.00
 - (Adaptive) Inflation damping factor = 1.00
 - (Adaptive) Inflation standard deviation = 0.60
 - (Adaptive) Inflation standard deviation lower bound = 0.60

# Time step: 19
 >> Statistics over period (1:19): avg. RMSE = 3.03, avg. Spread = 2.19
 $$ User input: Ensemble size has been changed from 4 to 10
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Matlab Hands-on: oned_model_inf

Try adaptive inflation.

Pick a lower value for standard deviation.
Initial lower bound on inflation of 1.0, upper bound large (100).

Try introducing a model bias.

What happens if lower bound is less than 1?
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Inflation Damping

Inflation mean damped towards 1 every assimilation time.
• inf_damping 0.9: 90% of the inflation difference from 1.0 is 

retained.
 
Can be useful in models with heterogeneous observations in time.
For instance, a well-observed hurricane crosses a model domain.
Adaptive inflation increases along hurricane trace.
After hurricane, fewer observations, no longer need so much 
inflation.

For large earth system models, following values may work:
inf_sd_initial   = 0.6,
inf_damping   = 0.9,
inf_sd_lower_bound = 0.6.
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Adaptive Inflation of State Variables

Suppose we want a global inflation for state variables, ls , instead.

Make same least squares assumption that is used in ensemble filter.

Inflation of ls for state variables inflates obs. priors by same amount.

Get same likelihood as before: 𝑝 𝑦!|𝜆 = 2𝜋𝜃" # ⁄% "𝑒𝑥𝑝 ⁄−𝐷" 2𝜃"

𝜃 = 𝜆0𝜎!" + 𝜎#"

Compute updated distribution for ls exactly as for single 
observed variable.
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Implementation of Adaptive Multivariate Inflation Algorithm

1. Apply inflation to state variables with mean of ls distribution.

2. Do following for observations at given time sequentially:
 a. Compute forward operator to get prior ensemble.
 b. Compute updated estimate for ls mean and variance.
 c. Compute increments for prior ensemble.
 d. Regress increments onto state variables.
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Spatially varying adaptive inflation algorithm

Have a distribution for l for each state variable 𝑖, ls,i.

Use prior correlation from ensemble to determine impact of ls,i on
prior variance for given observation.

If g is correlation between state variable i and observation then

𝜃 = 1 + 𝛾 𝜆0,1 − 1
"
𝜎!" + 𝜎#"

Equation for finding mode of posterior is now full 12th order:
 Analytic solution appears unlikely.
Can do Taylor expansion of q around ls,i.
Retaining linear term is normally quite accurate.
There is an analytic solution to find mode of product in this case!
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Matlab Hands-on: run_Lorenz_96_inf

Spatially Varying Adaptive inflation can be tested with matlab script run_lorenz96_inf.m

Can explore 3 different values that control adaptive inflation:
• Minimum value of inflation, often set to 1 (no deflation).
• Inflation damping. Value of 1.0 turns it off.
• The value of the inflation standard deviation.

• Lower bound on standard deviation is set to same value.
• In this case, standard deviation just stays fixed at selected value.



DART_LAB Section 5: 30 

Matlab Hands-on: run_Lorenz_96_inf

Adaptive inflation 
controls.

Adaptive 
inflation 
spatial plot.
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Matlab Hands-on: run_Lorenz_96_inf

Explore some of the following:

How does adaptive inflation change as localization is changed?
How does adaptive inflation change for different values of inflation standard deviation?
If the lower bound is smaller than 1, does deflation (inflation < 1) happen?
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Matlab Hands-on: run_Lorenz_96_inf

run_Lorenz_96_inf generates a summary file each time statistics are reset.

File run_lorenz_96_inf.log keeps track of parameter settings and metrics.

# Time step: 63
 >> Statistics over period (35:63): avg. Prior RMSE = 1.25, avg. Prior 
Spread = 1.32
 $$ User input: Assimilation Type has been changed from `EAKF` to `RHF`

  Current configuration:
  - Forcing `F` parameter = 8.00
  - Assimilation type is `RHF`
  - Observation Network is `1:40:1`
  - Ensemble size = 20
  - Localization = 0.30
  - Inflation Algorithm is `Gaussian`
  - Adaptive inflation lower bound = 1.00
  - Adaptive inflation upper bound = 5.00
  - Adaptive inflation damping factor = 0.90
  - Adaptive inflation standard deviation = 0.60
  - Adaptive inflation standard deviation lower bound = 0.60
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Simulating Model Error in 40-Variable Lorenz-96 Model

Inflation can deal with all sorts of errors, including model error.

Can simulate model error in Lorenz-96 by changing forcing.
Synthetic observations are from model with forcing = 8.0.

Both run_lorenz_96 and run_lorenz_96_inf allow model error.
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Spatially Varying Adaptive Inflation
Model error: Change forcing 
for assimilating model here.
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Spatially Varying Adaptive Inflation with Model Error

Explore some of the following:

Change the model forcing to a larger or smaller value (say 6 or 10).

How does adaptive inflation respond to model error?
Do good values of localization change as model error increases?
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Observing Network Exploration

The impact of the observing system can be explored.

Lorenz-96 has 40 state variables.

Following observing systems are available:
 Observe all 40 variables (1:40:1)
 Observe every other variable (1:40:2)
 Observe every 4th variable (1:40:4)
 Observe the first 20 variables only (1:20)
 Observe the 10th to 30th variables only (10:30)
 Observe variables 30 to 40 and 1 to 10 (1:10; 30:40)
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Observing Network Exploration

Observing network 
controls.
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Inflation Distribution Family

The inflation for each state variable is a random variable.

So far, it has been a normal distribution.

But, inflation/deflation is bounded below at zero.

Just like for bounded state variables, we can use a more appropriate 
distribution.

Inverse gamma is a good choice and is now the DART default.
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Inflation Distribution Family

Choose distribution 
family for inflation.


