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DART _LAB Tutorial Section 2:
How Should Observations Impact an
Unobserved State Variable? Multivariate Assimilation.




Single observed variable,

single unobserved variable.

So fa I, wWe have a known _ Posterior PDF
likelihood for a single variable. A
8 0.0} Variance Adjusted ¥ % %
& ™| Mean Shifted % /%
oL * * . .
-4 -2 0 2 4

Temperature

Now, suppose the prior has an additional unobserved variable ...

We will examine how ensemble members update the additional

variable.
Basic method generalizes to any number of additional variables.
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Ensemble filters: Updating additional prior state variables

Assume that all we

Q@

o)

'% 4 5* rrrrrrrrrrrrrrr * _ know is the prior

> joint distribution.

o . *

h 4 + ] One variable is

B e * | | observed.

& | |

235 S R What should

Q | | happen to the

D 3k * ; unobserved
variable?

= R % % 2¢
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

%43 *
o 4 o *¥ ¥ o] Assume that all we
- S'g % know is the prior

joint distribution.

One variable is
observed.

Update observed
variable as in
section 1.

¥* ¥* ¥

2 0 > 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

%43 i -
o 4 T Assume that all we
- S'g % know is the prior

joint distribution.

One variable is
observed.

Update observed
variable as in
section 1.

2 0 > 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

%43 i -
o 4 T Assume that all we
- S'g % know is the prior

joint distribution.

One variable is
observed.

Update observed
variable as in
section 1.

2 0 > 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

%43 i -
o 4 i T Assume that all we
- S'g % know is the prior
| | joint distribution.
*E k%
—

One variable is
- observed.

Compute
increments for prior
ensemble members
of observed
variable.

Increments

2 0 > 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

o S | Assume that all we
3 : o . o .
s : | drbeton
C>U 4.5 R '
% % * ¥ How should the
w4 ] unobserved variable be
§ p * impacted?
% 3.5 4 st PO
89 1% choice: least squares.
= W W
= 3% . * ; Equivalent to linear
Increments  *—% s% | regression.
¥ 3 *_"‘*nle _
-2 0 2 4 Same as assuming

Observed Variable binormal prior.
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Ensemble filters: Updating additional prior state variables

o S Have joint prior
% 5 distribution of two
= variables.
S I
g 4.5
= f How should the
N 4 unobserved variable be
3 F impacted?
-
O
2 3.5 15t choice: least squares.
= | |
- g * ; Begin by finding least

Increments %% 4y | squaresfit.

5 —% *
-2 0 2 4

Observed Variable
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Unobserved State Variable

. .
I*rgcrements *—**

! %

L

I?TZF ’ "N\ NCAR

2

Observed Variable

Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Next, regress the
observed variable
increments onto
increments for the
unobserved variable.

Equivalent to first finding

image of increment in
bivariate space.
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Unobserved State Variable

. .
I*rgcrements *—**

: ¥
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I?TZF ’ "N\ NCAR
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Observed Variable

Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Next, regress the
observed variable
increments onto
increments for the
unobserved variable.

Equivalent to first finding

image of increment in
bivariate space.
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Unobserved State Variable

. .
I*rgcrements *—**

: ¥

L

I?TZF ’ "N\ NCAR

2

Observed Variable

Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Next, regress the
observed variable
increments onto
increments for the
unobserved variable.

Equivalent to first finding

image of increment in
bivariate space.
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Unobserved State Variable

. .
I*rgcrements *—**

: ¥

ca I

I?TZF ’ "N\ NCAR
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Observed Variable

Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Next, regress the
observed variable
increments onto
increments for the
unobserved variable.

Equivalent to first finding

image of increment in
bivariate space.
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Unobserved State Variable

. .
I*rgcrements H*

: ¥

L

I?TZF ’ "N\ NCAR

2

Observed Variable

Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Next, regress the
observed variable
increments onto
increments for the
unobserved variable.

Equivalent to first finding

image of increment in
bivariate space.
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Ensemble filters: Updating additional prior state variables

o S Have joint prior
2 distribution of two
= * iables
= varia :
] 11
2 4.5
D : :
e * X Regression: Equivalent to
N 4 first finding image of
k5 * increment in bivariate
GEJ space.
o 3.5
2 3.
2 Then projecting from
> otk | i bivariate space onto
Increments  *_* %% | unobserved priors.
" 3% ~ *ue * _
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

o S Have joint prior
2 distribution of two
= * iables
= varia :
S 1L
2 4.5
) : :
e * * Regression: Equivalent to
N 4 first finding image of
B * increment in bivariate
GE) space.
» 3.5
2 3.
2 Then projecting from
> 3tk | | bivariate space onto
Increments  *_* % | unobserved priors.
" 3% *_“% _
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

o S Have joint prior
o) distribution of two
O 3% bles
= varia :
S 1L
2 4.5
) : :
e * * Regression: Equivalent to
N 4 first finding image of
B * increment in bivariate
GE) space.
» 3.5
2 3.
2 Then projecting from
> 3tk | | bivariate space onto
Increments  *—* % | unobserved priors.
" 3% x ** * _
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

o S Have joint prior
g X dlst.rllltc))lutlon of two
= variables.
g 4.5 i
*S—é * * Regression: Equivalent to
N 4 first finding image of
B * increment in bivariate
% 35 space.
o)
2 Then projecting from
> 3tk | | bivariate space onto

Iallgcrem'ents *;* s% | unobserved priors.

5 *
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Q@
o)
©
©
>
) : :
S & Regression: Equivalent to
N 4 first finding image of
B * increment in bivariate
CIE) space.
» 3.5
2 3.
2 Then projecting from
> 3tk | | bivariate space onto
Increments % % | unobserved priors.
" 3% * 3Ieale * _
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

o ° | Now have an updated
o (posterior) ensemble for
v * .
S sl % the unobserved variable.
L 4.5
o)
5 |
N 4
e, *
@
-
® 3.5 *
o
o)
=
gl*

We've expanded this plot. Same
information as previous slides.

Compressed these two.
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Unobserved State Variable

Ensemble filters: Updating additional prior state variables

3.5

Prior State Fit

] Now have an updated
(posterior) ensemble for
the unobserved variable.

Fitting Gaussians shows
: aL -4 that mean and variance
have changed.

2024
Obs.
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Ensemble filters: Updating additional prior state variables

Now have an updated
(posterior) ensemble for
the unobserved variable.

Posterior Fit |

Fitting Gaussians shows
: aL -4 that mean and variance
have changed.

Unobserved State Variable
N

3.5} | | | Other features of the
Prior State Fit | | prior distribution may
3 aL also have changed.
e
20214

Obs.
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Ensemble filters: Updating additional prior state variables

_Posterior Fit |
| CRITICAL POINT:

D

I

© *

© 4.5

> Since impact on

O ¢ . .
= | unobserved variable is
h 4 yia simply a linear

3 * | regression, can do this
= || INDEPENDENTLY for any
@ 3.5 | | | number of unobserved
o Prior State Fit | variables!

D

M4 Could also do many at
*ﬁ" once using matrix algebra

Anderson, J.L.. 2003: —2 C())bg 4 asin traditional Kalman

A local least squares framework for ensemble
filtering. Mon. Wea. Rev., 131, 634-642
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Filter.




Matlab Hands-On: twod_ensemble

Bivariate ensemble plot with
projected marginals for observed,
unobserved variables.

Start creating an ensemble. See
next slide.

File Edit View Insert Tools Desktop Winflow Help ™
Nede @ 0B KE
Joint Distributio
10
Create New Ensemble Observation - s Control
9 .
observation

8 Obs. Error SD -
o Update Ensemble Value and error;
87
s . « EAKF same as
5 ) EnKF oned_ensemble.
3 RHF
g 4 Marginal Distribution of Observation
a
g 3 '§0.8

2 g os Detailed plot for

= pum—
‘ & o RN < observed
° §" L7 AR variable; same as
o B * } oned_ensemble.
0 2 4 -* 6 10 0 1 2 3 4 = 6 7 8 9 10

( Observed Quantity Observed Quantity
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Matlab Hands-On: twod_ensemble

Move cursor and click in this frame to create

ensemble members. Click outside this frame

when all members are created.

File Edit
D de
10

9

Unobserved State Variable

—HE

View

Insert Tools Desktop Window

OB »[E
Joint Distribution

=)

Correlation = 0.770132

v
*

Help

¥

0 2 4 ! 8

Observed Quantity

Observation Likelihood

Create New Ensemble

Start creating an ensemble.

Observation n

Obs. Error SD

Update Ensemble
* EAKF
EnKF
RHF
Marginal Distribution of Observation
08¢}
06
04 - o
7 \
02 / N
4 ~ -
o P—H———=KX K—W——=——K
©o 1 2 3 4 5 & 7 8 9 10
Observed Quantity
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Matlab Hands-On: twod_ensemble

Explorations:
* Create ensemble members that are nearly on a line. Explore how the

unobserved variable is updated.

* What happens for nearly uncorrelated observed and unobserved

variables? Create a roundish cloud of points for the prior.
* What happens with a two-dimensional bimodal distribution?

* Try prior ensembles with various types of outliers.

DART LAB Section?2: 26
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Summary of Key Points so Far

We know how to:

1. Assimilate a single observation of a single state variable with normal
distributions.

2. Cyclically assimilate multiple observations at the same time if their error
distributions are independent.

3. Do cycled DA for a single variable and single observation with normal
distributions (Kalman Filter).

4. Duplicate cycled DA results using an ensemble of model forecasts for the

prior and fitting a normal to the ensemble prior (Ensemble Adjustment
Kalman Filter).

5. Update any number of additional variables given an observation using
ensemble increment regression.

Combining these things, we have a framework for doing cycled ensemble DA with
any number of ‘identity’ observations of model state variables at each time.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

1. Use model to advance ensemble (3 members here) to time at
which next observation(s) becomes available.

Ensemble state Ensemble state
estimate after using at time of next
previous observation observation
(analysis) (prior)

—

t
k/ — {k+1

%
*
* 4
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

2. Get the ensemble of values of the first observation to be
assimilated at this time (observation is of a state variable).
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

2. Get the ensemble of values of the first observation to be
assimilated at this time (observation is of a state variable).

tk Y

% ok ok

1‘75;} ‘ “N\NCAR

Theory: observations
from instruments with
uncorrelated errors can
be done sequentially.

Houtekamer, P.L. and H.L. Mitchell, 2001:
A sequential ensemble Kalman filter for
atmospheric data assimilation.

Mon. Wea. Rev., 129, 123-137
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

3. Get observed value and likelihood from observing system.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

4. Find the increments for the prior observation ensemble,
this is a scalar problem.

A | near DART_LAB Section 2: 32



Schematic of an Ensemble Filter for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

tk : \ Theory: impact of observation
- .

;‘_‘ increments on each state

% /’( variable can be handled

independently!
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

Repeat steps 2-5 sequentially for each observation at this time.

Theory: impact of observation

(% N
increments on each state

- . variable can be handled
independently!

% ok ok
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

6. When all observations at this time are assimilated, integrate
model state to the next time with observations.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

Reminder: This schematic has assumed that observations are
‘identity’ observations of model state variables.
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Data Assimilation: A somewhat general description

A time-varying state-vector X,
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Data Assimilation: A somewhat general description

A time-varying state-vector X,

Times t;, with observations: k=1,2,...; tr41 >t = to,

DART LAB Section?2: 38



Data Assimilation: A somewhat general description

A time-varying state-vector X,
Times t;, with observations: k=1,2,...; tr41 >t = to,
Observations at t related to X, ;  yr = Irzk(xtk) + Vg, (1)

Observations

Observation
Forward Error

Operator
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Data Assimilation: A somewhat general description

A time-varying state-vector X,
Times t;, with observations: k=1,2,...; tr41 >t = to,
Observations at t related to X, ;  yr = hk(th) + Vg, (1)

Observation error is zero mean, normal, v, = N(O,Ry), (2)

/

Observation
Error
Covariance

We assume Ry, is diagonal (observation errors are uncorrelated for
different observations) for the rest of the tutorial.

rgg; ‘ o DART_LAB Section 2; 40



Data Assimilation: A somewhat general description

A time-varying state-vector X,
Times t;, with observations: k=1,2,...; tr41 >t = to,
Observations at t related to X, ;  yr = hk(th) + Vg, (1)

Observation error is zero mean, normal, v, = N(O,Ry), (2)

A forecast model m for the state-vector; x;,,, = myx41(x¢,) (3)
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Data Assimilation: A somewhat general description

A time-varying state-vector X,

Times t;, with observations: k=1,2,...; tr41 >t = to,

—_

Observations at t related to X, ;  yr = hk(th) + Vg, 1)
Observation error is zero mean, normal, v, = N(O,R;), (2)
A forecast model m for the state-vector; x;,,, = myx41(x¢,) (3)

m can have deterministic and stochastic parts;

\

M1 (Xe,) = fronr1(Xe,) + Grerer1 (Xe, ). (4)
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Data Assimilation: A somewhat general description

Define the set of all observations taken no later than time ty:
Yk = {yl,l < k} (5)

Problems of interest are:

Analysis: P(X¢|Yy), t=ty (6)
Forecast: P(X¢|Yy), t>t; (7)
Smoother: P(x;|Yy), t <ty (8)
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Data Assimilation: A somewhat general description

Define the set of all observations taken no later than time ty:
Y, ={yi;i <k} (5)

Problems of interest are:

Analysis: P(X¢|Yy), t=ty (6)
Forecast: P(X¢|Yy), t>t; (7)
Smoother: P(x:|Y), t <ty (8)

Note: could also replace x; with any of the other things data
assimilation can estimate: parameters, initial conditions, ...
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Data Assimilation: A somewhat general description

Forecasts of state, X are obtained from model.

Need to update forecast state given new observations:

\

P(th|Yk) = P(th|Yk» Yk—l)

Bayes’ rule:

P(Yk|xtk»Yk—1)P(th|Yk—1)
P(yi|Yk-1) (9)

P(x¢, |Yx) =

Observation errors uncorrelated in time:
P(Yklxtk' Yk—l) — P(Yklxtk)

Denominator in (9) is normalization, makes update a pdf.
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Data Assimilation: A somewhat general description

Probability after new observation:
Prior (forecast)

Likelihoi /

P(xe. Yy) = P(yi|X)P(x¢, |Yi—1) (10)
Ll Tk Normalization

Posterior (analysis).
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Data Assimilation: A somewhat general description

Probability after new observation:
Prior (forecast)

Likenho<l /

P(X |Y ) . P(Yle)P(thlYk_l) (10)
Ll Tk Normalization

Posterior (analysis).
Forecasts produced by applying model to analysis.

Smoother can be derived from a similar Bayesian analysis.
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Data Assimilation: A revised description

Define extended state vector that combines model state and obs:

ﬁtk = [th' y’\f]

An extended forecast model m;
Xtper = mk:k+1(xtk) = [th+1’hk+1(xtk+1)] =

[mk:k+1(xtk)» R +1 (mk:k+1(xtk))]
Observations at tj related to X;, by ‘identity’ forward operator;

Vi = ﬁk(ﬁtk) T Vg,

H,, has row for each observation, column for each extended state element.
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Data Assimilation: A revised description

Observations at tj related to X;, by ‘identity’ forward operator;
Vi = He(Re,) + i,
H, is linear, so it can be represented by a matrix.
Has a row for each observation, a column for each extended state element.

All zeros except a diagonal of 1’s in the last number of obs columns.

This example has a 5-element model state vector and 4 observations

S

&

I
o O OO
o O O O
o O O O
o O OO
o O O O
S O O
S O - O
O R O O
_o O O
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Data Assimilation: A revised description

A time-varying extended state-vector X;,

Times t;, with observations: k=1,2,...; tr41 >t = to,

—_

Observations at ty related to X, ; yx = ﬁk(ﬁtk) + vy, 1)
Observation error is zero mean, normal, v, = N(O,Ry), (2)
A forecast model 7 for the state-vector; &, = Myx41(X¢,) (3)

m can have deterministic and stochastic parts;

\

Mperer1(Xe,) = frerr1(Xe,) + Greerr (Xe, )- (4)
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

1. Use model to advance ensemble (3 members here) to time at
which next observation(s) becomes available, and compute
forward operators for all observations for each ensemble.

Extended
ensemble state
at time of next

Ensemble state

estimate after using

previous observation .
observation

(analysis) . (prior)
tk
/ — tk+1

— 4
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

2. Get the ensemble of values of the first observation to be
assimilated at this time (observation is of an extended
state variable).

-] I >

Theory: observations
from instruments with
uncorrelated errors can
be done sequentially.

tk+1 Houtekamer, P.L. and H.L. Mitchell, 2001:

A sequential ensemble Kalman filter for

— / atmospheric data assimilation.

Mon. Wea. Rev., 129, 123-137

% ok ok
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

3. Get observed value and likelihood from observing system.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

4. Find the increments for the prior observation ensemble,
this is a scalar problem.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto extended state variable
increments.

tk : \ Theory: impact of observation
- .

;‘_‘ increments on each state

% /’( variable can be handled

independently!
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

Repeat steps 2-5 sequentially for each observation at this time.

tk : Theory: impact of observation
increments on each extended

_ = state variable can be handled
independently!

% ok ok
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

This is implemented in DART Fortran code

6. When all observations are assimilated, integrate model state to
the next time that has observations.
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Matlab Hands-On: run_lorenz_63

Purpose: Explore behavior of ensemble Kalman filters in a low-order,
chaotic dynamical system, the 3-variable Lorenz 1963 model.

[ NON ) Figure 1: run_lorenz_63
File Edit View Insert Tools Desktop Window Help

These controls work the
ieW e - Time = 381
o / same as for oned_model.

......... Advance Model

........

..........

. - Start Auto Run Assimilation can be

* No Assimilation €= turned Offr jUSt does

36
O EAKF
35 RS o model advances.

Global View

local timeframe

Black is True Trajectory
Green is Ensemble

Red is Obs. Increments

Red * is Observation

Obs. error SD is N(0,1)

full timeframe.
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Matlab Hands-On: run_lorenz_63

Both panels show time evolution of true state (black). o

20 ensemble members are shown in green in top window.

Figure 1: run_lorenz_63
File Edit View Insert Tools Desktop Window Help

Local View

Black is True Trajectory
Green is Ensemble
Red is Obs. Increments
Red * is Observation

Obs. error SD is N(0,1)

e ‘ “N\NCAR

Time =381

Advance Model

Start Auto Run

No Assimilation
© EAKF
EnKF
'RHF

Global View

At each observation time,
the three components of the
truth are 'observed’ by
adding a random draw from
a standard normal
distribution to the true value.
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Matlab Hands-On: run_lorenz_63

You can use Matlab tools to modify plots.

| NON | /Figure 1: run_lorenz_63

File Edit View Insert Tools

Desktop Window Help

Local View

40... e i

39+

384

Black is True Trajectory
Green is Ensemble
Red is Obs. Increments
Red * is Observation

Obs. error SD is N(0,1)

,,,,,,,,

30
25
20
15+
10

Time = 381

Advance Model

Start Auto Run

Here, the Rotate 3D
tool has been used
to change the angle
of view of both the
local and global
views of the
assimilation.
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Matlab Hands-On: run_lorenz_63

Explorations:

Select|Start Auto Run and watch the evolution of the ensemble.

Try to understand how the ensemble spreads out.

e Restart the GUI and select

EAKF.

Do individual advances and

assimilations and observe the behavior.

e Do some auto runs with assimilation turned on.

assimilation behavior.

Explore how different areas of the attractor have different

e ‘ “N\NCAR
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Matlab Hands-On: run_lorenz_96

Purpose: Explore the behavior of ensemble filters in a 40-
variable chaotic dynamical system; the Lorenz 1996 model.

Figure 1: run_lorenz_96

File Edit View Insert Tools Desktop Window Help P .
These controls 7%, 0™, Wi Sed s a 08 s _— Modelforcing.

work the same :
\ Advance Model mﬂ'ﬂ?ﬂ,gﬂ: D EERERF=E lization 1.0

as |O ren 2_6 3 . ) EAKF Model Forcing: 8 Inflation 1.0

Start Auto Run DGl N 0
RHF Ens. Size 20
2 1l =22 90 —True State\
Root mean ' 120 + g —Ensemble
3 A ,
square error 3 Parameters
from truth and £ f9r ensemble
ensemble — filter.
180 0

spread as Time .

Prior Rank Histogram Posterior Rank Histogram
function of

. 100

time.

Frequency

(<)
o

Frequency

5 10 15 20
Rank

| a ;
. ;
*
270
Clear Histograms \ Reset
A Y

Ensemble of model

Prior and posterior
contours (spaghetti plot).

rank histograms.
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Matlab Hands-On: run_lorenz_96

Start a Free Run of the ensemble (No Assimilation). After some time, the
minute perturbations in the original states lead to visibly different model states.

Figure 1: run_lorenz_96
File Edit View Insert Tools Desktop Window Help
Nade M RKIKODEK- 3 0B o @

N

Advance Model Afsﬂ'flfﬁ.xﬁf True State has F =38 Localization 10
. EAKF Model Forcing: 8 Inflation 1.0
Takes a while for Start Auto Run o o — L
< e ns. Size
the small initial : — - e o7
. \ » ,,i Ime = ) ——True State
perturbations to g | P 20 B embie
E H LN : v'__‘t'\
grow. £ =P i Ny 7\
gz 150 30
z
h . o 180 ‘ Localization 4 J'..}‘:s* 0
Ly Pror Rank Histogram TIM% osterior Rank Histogram 1
Ensemble size is 100 s S
—30 3 |\ 7
20, so there are Zl\g‘is 05 2 |
. . g 04 8
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Matlab Hands-On: run_lorenz_96

Note: All 40 state variables are
observed. Observation error
standard deviation is 4.0

1) Stop the free run after some time.
2) Turn on the EAKF.
3) Advance model, assimilate...

Figure 1: run_lorenz_96
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Matlab Hands-On: run_lorenz_96

Explorations:

* Do an extended free run to see error growth in the ensemble.
How long does it take to saturate?

* Select EAKF and explore how the assimilation works.
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